1 Here are two solids.

Cylinder

radius 4 cm height 10 cm



# Hemisphere

radius 6 cm



volume of a hemisphere =  $\frac{2}{3} \pi r^3$  where r is the radius

Which solid has the greater volume?

You **must** show your working.

[4 marks]

Volume of a hemisphere: 
$$\frac{2}{3} \times 12 \times 6^3$$

Answer Wlinder (1)

2 Here are three similar cuboids, A, B and C.

A has length 5 cm, width 2 cm and height 3 cm

B has length 10 cm

C has length x cm

3 cm

5 cm

Α



В



2 (a) The total surface area of A is 62 cm<sup>2</sup>

Tim wants to work out the total surface area of B.

Here is his working.

$$10 \div 5 = 2$$

$$62 \times 2 = 124$$

Total surface area of  $B = 124 \text{ cm}^2$ 

Make one criticism of Tim's method.

[1 mark]

| The | scale | factor | should | be | 4. | Hence, | 62 ×4 | 5 | 248 |
|-----|-------|--------|--------|----|----|--------|-------|---|-----|
|-----|-------|--------|--------|----|----|--------|-------|---|-----|



Volume of A ×  $\frac{125}{8}$  = Volume of C 2 (b)

Work out the value of x.

$$\sqrt[3]{\frac{125}{8}} \cdot \frac{5}{2} \quad ()$$

[3 marks]

length of A 
$$\times \frac{5}{2}$$
 = length of C

Answer \_\_ | 12 .5



A ball contains 5000 cm<sup>3</sup> of air.

More air is pumped into the ball at a rate of 160 cm<sup>3</sup> per second.

The ball is full of air when it becomes a sphere with radius 15 cm



Volume of a sphere =  $\frac{4}{3}\pi r^3$  where r is the radius

Does it take less than 1 minute to fill the ball?

You must show your working.

Volume of ball =  $\frac{4}{3} \times 17 \times 15^3$ 

[4 marks]

time taken = 
$$\frac{9137 \text{ cm}^3}{160 \text{ cm}^3 \text{ s}^4} = 57.1 \text{ s}$$

4 A box is the shape of half a cylinder on top of a cuboid.



Work out the volume of the box.

[4 marks]

Volume of half cylinder =  $\frac{1}{2} \times \pi \times 13^2 \times 15$ 

= 1267.5 R = 3979.95

Total volume = 1560 + 3979.95...

Answer 5539 cm<sup>3</sup>

5 Outside a cafe there is a large plastic ice cream cornet.

The cornet is a hemisphere on top of a cone.



The cone and the hemisphere each have radius 24 cm The cone has perpendicular height 117 cm

Volume of a cone = 
$$\frac{1}{3} \pi r^2 h$$

r is the radius

h is the perpendicular height

Volume of a hemisphere = 
$$\frac{2}{3} \pi r^3$$

r is the radius

5 (a) Work out the total volume of the cornet.

[4 marks]

Volume of a cone = 
$$\frac{1}{3} \times R \times 24 \times 117 = 22 + 64 R$$



Volume of a hemisphere = 
$$\frac{2}{3} \times tc \times 24^3 = 9216 tc$$





Answer qq 538

 $cm^3$ 

6 Here is a scale drawing of a reservoir.

Scale: 1 cm represents 500 m



Virat wants to estimate the volume of water in the reservoir.

He draws on the scale drawing a circle with radius 3 cm



- 6 (a) Virat estimates the volume of the reservoir by assuming that
  - the reservoir is a cylinder whose cross section is the circle
  - the depth of the reservoir is 17 metres.

Work out Virat's estimate in cubic metres.

[3 marks]

Actual radius = 
$$3 \times 500 = 1500 \text{ m}$$

Volume =  $12 \times 1500^{2} \times 17$ 

=  $38 \times 250 \times 100 \times 10^{3}$ 

=  $120 \times 181 \times 500 \times 10^{3}$ 

=  $1.2 \times 10^{8} \times 10^{3} \times 10^{3}$ 

- **6 (b)** In fact,
- the depth of the reservoir is 13.8 metres
- the reservoir is **not** a cylinder (see diagram).

Which statement about the actual volume of the reservoir is correct?

Tick one box.





Give a reason for your answer.

[2 marks]

The area is larger but the depth is smaller



7 A solid hemisphere has radius x.

A solid cylinder has radius 3x and height x.



Surface area of a sphere =  $4\pi r^2$  where r is the radius

Work out the ratio

total surface area of the hemisphere : total surface area of the cylinder Give your answer in its simplest form.

You must show your working.

surface area of hemisphere:  $\frac{4\pi x^2}{2} + \pi x^2 = 3\pi x^2$  [3 marks]

surface area of cylinder:  $2 \times 12 (3x)^2 +$ 

5.0.0 of hemisphere: 5.0 of cylinder =  $3\pi x^2$ :  $24\pi x^2$ 

Answer : 8

8

Volume of a sphere = 
$$\frac{4}{3}\pi r^3$$

A bowl is a hemisphere with radius 12 cm



Water is poured into the bowl at a rate of 325 cm<sup>3</sup> per second for 8 seconds.

Does the water fill **more than** 70% of the bowl? You **must** show your working.

[4 marks]

volume of hemisphere = 
$$\frac{1}{21} \times \frac{14^2}{3} \times tc \times 12^3$$

[2 marks]

**9** Here is cuboid A.



Cuboid B is made from two of cuboid A.



volume of A: volume of B = 1:2

Matthew says,

"surface area of A: surface area of B must be 1: 2 because B is made of 2 of A."

Is Matthew correct?

Tick one box.



Give a reason for your answer.

| 2 faces are hidden. (1) |  |  |
|-------------------------|--|--|
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |
|                         |  |  |

## 10 A solid shape is made from centimetre cubes.

The front elevation and side elevation of the shape are shown.

Not drawn accurately



#### Work out

the **maximum** possible number of cubes in the shape and

the **minimum** possible number of cubes in the shape.

Maximum:

Max =  $12 \times 66$ = 792front

Maximum

The side Maximum

The side Maximum

The side Maximum

The side Minimum

The side Mini

## 11 (a) Here is a cuboid.

w, x and y are **different** whole numbers.



The total length of all the edges of the cuboid is 80 cm

The volume is  $\mbox{greater}$  than 200  $\mbox{cm}^3$ 

Work out one possible set of values for w, x and y.

[2 marks]

$$4w + 4y + 4x = 80$$
 $4(w + x + y) = 80$ 
 $w + x + y = 20$ 
 $w + x + y = 20$ 

11 (b) Here is a solid cube.



Circle the expression for the **total** surface area in cm<sup>2</sup> ( (9a<sup>2</sup>)

[1 mark]

36*a* 

54*a* 

 $36a^{2}$ 



Alec makes a bowl for dog food from a solid wooden cone.

The sketches show how the bowl is made.

The cone has radius 9 cm and perpendicular height 30 cm

A smaller cone, with radius 6 cm, is removed.



Not drawn accurately

Volume of a cone 
$$=\frac{1}{3}\pi r^2 h$$
 where  $r$  is the radius and  $h$  is the perpendicular height

A hemisphere with radius 6 cm is then removed.



Not drawn accurately

Volume of a hemisphere  $=\frac{2}{3}\pi r^3$  where r is the radius

Work out the volume of the remaining wood that forms the bowl.

[5 marks]

Volume of large cone : 
$$\frac{1}{3} \times \pi \times q^2 \times 30 = 810 \pi$$

$$\frac{1}{3} \times 12 \times 36 \times 20 = 240 \text{ tc}$$

Answer \_\_\_\_\_ cm<sup>3</sup>

Here is a cone.



13 (a)

Curved surface area of a cone =  $\pi r l$  where r is the radius and l is the slant height

Beth tries to work out the curved surface area in terms of  $\boldsymbol{\pi}$ 

Curved surface area of the cone =  $\pi \times 5 \times 12$  =  $60\pi\,\text{cm}^2$ 

What mistake has she made?

[1 mark]

The value of L should be 13 instead of 12

13 (b)

13 (c)

| Work out his estimate.         |                                      | [2 marks]     |
|--------------------------------|--------------------------------------|---------------|
| Area of the base of            | f the cone = Kxr2                    | [2 mano]      |
|                                | - 3 × 5 <sup>2</sup>                 | 4.            |
|                                | : 3 × 25                             | $\mathcal{V}$ |
|                                | = 75 cm² /                           | ^             |
|                                | J (                                  | $\mathcal{Y}$ |
| Answer                         | 75                                   | cm²           |
|                                |                                      |               |
| Beth uses $\pi = 3.14$ to es   | timate the area of the <b>base</b> o | of the cone.  |
| Is Beth's estimate more than o | or less than Adam's estimate?        | ?             |
| Tick a box.                    |                                      |               |

Less than

Give a reason for your answer.

More than

[1 mark]

3.14 is larger than 3.

### 14 Here is a right-angled triangular prism.



Volume of prism :

The ratio of the edges is a:b:c:d=3:4:5:12

$$\frac{1}{2}$$
 x (axb) x d

The **volume** of the prism is 1125 cm<sup>3</sup>

Work out the total length of **all** of the edges of the prism.

[5 marks]

let length of edges is variable of x.

Volume of prism = 
$$\frac{1}{2} \times 3x \times 4x \times 12x = 1125$$
  
 $x = 144x^3 = 2250$   
 $x^3 = 15.625$   
 $x = \sqrt[3]{15.625}$   
 $x = 2.5$ 

 $a : 3 \times 2.5 : 7.5 \text{ cm}$   $b : 4 \times 2.5 : 10 \text{ cm}$   $C : 5 \times 2.5 : 12.5 \text{ cm}$ Total length of edges : 2(7.5) + 2(10) + 2(12.5) + 3(30)

$$\frac{d = 12 \times 2.5 = 30 \text{ cm}}{d = 12 \times 2.5 = 30 \text{ cm}}$$

Answer J50 cm

15 A cylinder, C, and a sphere, S, each have radius r C has height h





Volume of a sphere  $=\frac{4}{3}\pi r^3$  where r is the radius

15 (a) volume of C = volume of S

Work out the ratio r: h

You **must** show your working.

[3 marks]

volume of 
$$c = tr^2 h$$
  
volume of  $s = \frac{4}{3}tr^3$ 



Answer \_\_\_\_\_ : \_\_\_\_

# **15 (b)** A **different cylinder** has radius 3r and height 2h.

How many times bigger is the volume of this cylinder than the volume of C?

[2 marks]

